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1. Introduction

Many relativistic field theories admit a hydrodynamic description as a low energy ap-

proximation.1 Relativistic hydrodynamics, in particular, plays an important role in our

understanding of various astrophysical phenomena and it appears to be a good description

of the physics in the case of heavy-ion collisions at appropriate regimes.2

In this case, the relativistic hydrodynamics relevant for heavy-ion collisions should

emerge as an approximation to a strongly coupled field theory - the Quantum Chromo-

dynamics(QCD). One way to develop insight regarding the emergence of hydrodynamic

behavior in such a strongly coupled theory is to study the hydrodynamic limit of various

other toy models which are strongly coupled and which somewhat resemble QCD. One

such simple model is the N = 4 SYM theory which is simpler than QCD because of its

super-conformal nature.

1In general, hydrodynamics is a valid description of a system when the ratio of mean free path to the

length/time scale at consideration (i.e., the Knudsen number) is small and when the system is in local

thermal equilibrium to a good approximation.
2See for example,[3 – 7] and references therein.
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Further, N = 4 SYM has been conjectured to be dual to II B string theory in the

AdS5×S5 background. This duality is called the AdS/CFT correspondence(See [8 – 10]

for a review). If we work in a supergravity approximation, the AdS/CFT correspondence

relates the thermodynamics of blackholes in the AdS5 background to the thermodynamics

of a gauge theory in an appropriate limit. This correspondence has been used extensively

to understand N = 4 SYM hydrodynamics - including a holographic derivation of the

viscosity and more recently, a derivation of various non-linear response coefficients.

AdS/CFT correspondence is the most well-known example of a more general gauge-

gravity duality which conjectures a gravity dual for many gauge theories which need not

necessarily be superconformal. Given that we are interested in the low-energy hydrody-

namics limit that is dual to AdS gravity, many statements made in this paper can be

generalized to hydrodynamics of any such field theory which is dual to general relativity

in asymptotically AdS spacetimes.3 In particular, all statements we make about the hy-

drodynamic description of N = 4 SYM will hold true for any four-dimensional conformal

field theory with an AdS gravity dual.4

The energy-momentum tensor of N = 4 SYM fluid (accurate up to second derivatives

of velocity) is now known via holographic methods [1, 2]. In the notation of this paper5 ,

T µν = p (gµν + 4uµuν) + πµν (1.1)

πµν = −2η
[
σµν − τπ uλDλσµν + τω(ωµ

λσλν + ων
λσλµ)

]
(1.2)

+ξσ

[
σµ

λσλν −
Pµν

3
σαβσαβ

]
− ξCCµ

α
ν
βuαuβ (1.3)

with

p =
N2

c

8π2
(πT )4 ; η =

N2
c

8π2
(πT )3 ; (1.4)

τπ =
2 − ln 2

2πT
; τω =

ln 2

2πT
; ξσ = ξC =

4 η

2πT
. (1.5)

where p is the pressure of the fluid,T its temperature, uµ its four-velocity and η its shear

viscosity. The second equation is the constitutive relation that relates the visco-elastic

stress πµν to the shear strain rate σµν and vorticity ωµν . τπ, τω, ξσ and ξC are the non-

linear response coefficients.

In this paper, we propose an entropy current consistent with the energy-momentum

tensor above -

Jλ
s = 4πη

[
uλ−

[(ln 2)σµνσµν +ωµνωµν ]uλ+2uµ(Gµλ + Fµλ)+6Dνωλν

8(πT )2

]

with T DµJµ
S = 2ησµνσµν ≥ 0. (1.6)

Note that the above expression, reduces in the appropriate limit to the holographic result

Jλ
s = 4πηuλ of Kovtun, Son and Starinets [15].

3There is now a vast literature on hydrodynamic models arising from holography and their applications

to heavy ion collisions. A non-exhaustive list of references include [11 – 33, 1, 2, 34, 35] .
4The author wishes to thank Shiraz Minwalla for pointing this out.
5See appendix(C) for a summary of notation used in this paper.
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The plan of the paper is as follows - In section 2, we introduce a manifestly Weyl-

covariant derivative especially suited to the study of conformal fluids and list the various

conformal observables that occur in fluid mechanics. Since, we are interested in conformal

fluids on arbitrary spacetimes, in section section 3 we describe in some detail the various

curvature related observables that occur in conformal hydrodynamics. This is followed by

the section section 4, where the equations of fluid mechanics are formulated in a conformally

covariant way. We end section 4 by writing down the derivative expansion for a conformal

fluid exact up to second derivative terms.

Next, we proceed in section section 5 to find a derivative expansion of the local entropy

current for a conformal fluid which obeys the second law of thermodynamics. We make a

proposal for the entropy current of a conformal fluid living in arbitrary spacetimes (with

d > 3). Next,in section section 6, we turn to the specific case of N = 4 SYM and find the

corresponding expression for the entropy flux.

This is followed by the section section 7 where we compare the method adopted in

this paper with the existing theories of relativistic hydrodynamics. In the final section,

we discuss future directions and conclude. In appendix (A) , we prove some very useful

identities that were used in the body of the paper. This is followed by appendix (B) where

we discuss the various terms that can in principle occur in the energy-momentum tensor

of a conformal fluid. Finally, appendix (C) has a summary of notation used in this paper.

2. Conformal observables in hydrodynamics

In the following section, we first introduce a manifestly Weyl-covariant formalism which is

especially suited to the study of conformal fluids. This is followed by a brief discussion on

the various conformal observables in fluid mechanics.

Consider a conformal fluid in d > 3 dimensions. We seek the Weyl transformations of

various observables of such a fluid. To this end, consider a conformal transformation which

replaces the old metric gµν with g̃µν given by

gµν = e2φg̃µν ; gµν = e−2φg̃µν (2.1)

The Christoffel symbols transform as(See, for example, appendix (D) of [36])

Γλµ
ν = Γ̃λµ

ν + δν
λ∂µφ + δν

µ∂λφ − g̃λµg̃νσ∂σφ (2.2)

Let uµ be the four-velocity describing the fluid motion. Using gµνuµuν = g̃µν ũµũν =

−1, we get uµ = e−φũµ. It follows that the projection tensor transforms as Pµν = gµν +

uµuν = e−2φP̃µν . The transformation of the covariant derivative of uµ is given by

∇µuν = ∂µuν + Γµλ
νuλ

= e−φ
[
∇̃µũν + δν

µũσ∂σφ − g̃µλũλg̃νσ∂σφ
] (2.3)

– 3 –
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The above equation can be used to derive the transformation of various related quan-

tities

ϑ ≡ ∇µuµ = e−φ
[
ϑ̃ + (d − 1)ũσ∂σφ

]
,

aν ≡ uµ∇µuν = e−2φ
[
ãν + P̃ νσ∂σφ

]
,

Aν ≡ aν −
ϑ

d − 1
uν = Ãν + ∂νφ.

(2.4)

We define a Weyl covariant derivative6 D such that, if a tensorial quantity Qµ...
ν... obeys

Qµ...
ν... = e−wφQ̃µ...

ν... , then Dλ Qµ...
ν... = e−wφD̃λQ̃µ...

ν... where

Dλ Qµ...
ν... ≡∇λ Qµ...

ν... + w AλQµ...
ν... +

[
gλαA

µ − δµ
λAα − δµ

αAλ

]
Qα...

ν... + . . .

− [gλνA
α − δα

λAν − δα
ν Aλ] Qµ...

α... − . . .
(2.5)

Note that the above covariant derivative is metric compatible (Dλgµν = 0).

Using the Weyl covariant derivative, the fluid mechanics can be cast into a manifestly

conformal language. In order to make contact with the conventional fluid dynamics, we

give below some commonly occurring observables in both the notations - the advantages

of the manifestly conformal notation is self-evident.

Dµuν = ∇µuν + uµaν −
ϑ

d − 1
Pµ

ν = σµ
ν + ωµ

ν = e−φD̃µũν ,

σµν ≡
1

2

(
Pµλ∇λuν + P νλ∇λuµ

)
−

1

d − 1
ϑPµν =

1

2
(Dµuν + Dνuµ) = e−3φσ̃µν ,

ωµν ≡
1

2

(
Pµλ∇λuν − P νλ∇λuµ

)
=

1

2
(Dµuν −Dνuµ) = e−3φω̃µν .

(2.6)

In order to study fluid dynamics up to second derivative terms, we will need the

expressions involving second derivatives of fluid velocity.

DµDνu
λ = Dµσν

λ + Dµων
λ = e−φD̃µD̃ν ũλ (2.7)

Dλσµν = ∇λσµν + Aλσµν + Aµσλν + Aνσµλ − gµλA
ασαν − gνλA

ασµα = eφD̃λσ̃µν

Dλωµν = ∇λωµν + Aλωµν + Aµωλν + Aνωµλ − gµλA
αωαν − gνλA

αωµα = eφD̃λω̃µν

Apart from the fluid velocity uµ introduced above, a conformal fluid is characterized

by its temperature T and various chemical potentials µi associated with different conserved

6More precisely, what we are doing here is to use the additional mathematical structure provided by a

fluid background (namely a unit time-like vector field with conformal weight w = 1) to define what is known

as a Weyl connection over (M, C) where M is the spacetime manifold with the conformal class of metrics

C . A torsionless connection ∇
weyl is called a Weyl connection(see for example, [37] and references therein)

if for every metric in the conformal class C there exists a one form Aµ such that ∇
weyl
µ gνλ = 2Aµgνλ .

Having a fluid over the manifold provides us a natural one form Aµ (see below), which can in turn be used

to define a Weyl connection. The ‘prolonged’ covariant derivative D that we use in this paper is related

to this Weyl connection via the relation Dµ = ∇
weyl
µ + wAµ . In terms of this covariant derivative, the

condition for Weyl connection is just the statement of metric compatibility(Dλgµν = 0) and the one-form

Aµ is uniquely determined by requiring that the covariant derivative of uµ be transverse (uλ
Dλuµ = 0) and

traceless (Dλuλ = 0).
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charges(where i = 1, . . . , k denotes the various charge currents). Under the AdS/CFT cor-

respondence, these thermodynamic quantities can be directly related to the thermodynamic

properties of black holes in the AdS backgrounds.

The Weyl transformation of the temperature and the chemical potentials can be written

as T = e−φT̃ and µi = e−φµ̃i . Further, we can define νi = µi/T = ν̃i . It is straightforward

to write down the conformal observables involving no more than second derivatives of the

temperature and the chemical potentials.

Dµνi = ∇µνi = D̃µν̃i,

DµT = (∇µ + Aµ)T = e−φD̃µT̃

DλDσνi = ∇λ∇σνi + Aλ∇σνi + Aσ∇λνi − gλσA
α∇ανi = D̃λD̃σν̃i

DλDσT = ∇λ∇σT + 2Aλ∇σT + 2Aσ∇λT − gλσA
α∇αT ×

× d + T [∇λAσ + 3AλAσ − gλσA
αAα]

= e−φD̃λD̃σT̃

(2.8)

Fortunately, we rarely have to deal with the above quantities in their entirety. Often,

only specific projections of the above quantities are required. We list below some common

fluid mechanical observables which involve second derivative of the fluid velocity -

Dλσµλ =
(
∇λ − (d − 1)Aλ

)
σµλ = eφD̃λσ̃µλ

Dλωµλ =
(
∇λ − (d − 3)Aλ

)
ωµλ = eφD̃λω̃µλ

uλDλσµν = uλ∇λσµν +
ϑ

d − 1
σµν − uµA

ασαν − uνA
ασαµ = ũλD̃λσ̃µν

= Pµ
αPν

βuλDλσαβ = Pµ
αPν

βuλ∇λσαβ +
ϑ

d − 1
σµν

uλDλωµν = uλ∇λωµν +
ϑ

d − 1
ωµν − uµA

αωαν + uνA
αωαµ = ũλD̃λω̃µν

= Pµ
αPν

βuλDλωαβ = Pµ
αPν

βuλ∇λωαβ +
ϑ

d − 1
ωµν

uµDλσµν = uµ∇λσµν +
ϑ

d − 1
σλν − uλA

ασαν = ũµD̃λσ̃µν

= −(Dλuµ)σµν = −σλ
µσµν − ωλ

µσµν

uµDλωµν = uµ∇λωµν −
ϑ

d − 1
ωλν − uλA

αωαν = ũµD̃λω̃µν

= −(Dλuµ)ωµν = −σλ
µωµν − ωλ

µωµν

(2.9)

All observables in conformal hydrodynamics (that is accurate up to second derivative

terms) can be written in terms of the following quantities -

νi, T , uµ, gµν , ǫµν...σ

Dµνi, DµT , σµν , ωµν ,

DλDσνi, DλDσT , Fµν = ∇µAν −∇νAµ, Dλσµν , Dλωµν ,

Rµνλ
α

(2.10)
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where Rµνλ
α is the curvature tensor associated with the Weyl-covariant derivative Dλ (See

equation(3.1) in the next section).

3. The Curvature tensors

To complete the classification of the various tensors that can be constructed at the second

derivative level, we need to study the curvature tensors that appear via the commutators

of two covariant derivatives. Hence, in this section, we consider in some detail the various

curvature related observables in conformal hydrodynamics. In addition, we use this section

to establish the notation for the various curvature tensors that appear in this paper.

We can define a curvature associated with the Weyl-covariant derivative by the usual

procedure of evaluating the commutator between two covariant derivatives. The standard

formalism goes through except for some subtleties we mention below. For a covariant

vector field Vµ = e−wφṼµ , we get

[Dµ,Dν ]Vλ = w Fµν Vλ −Rµνλ
α Vα with

Fµν = ∇µAν −∇νAµ

Rµνλ
α = Rµνλ

α + ∇µ [gλνA
α − δα

λAν − δα
ν Aλ] −∇ν

[
gλµA

α − δα
λAµ − δα

µAλ

]

+
[
gλνA

β − δβ
λAν − δβ

νAλ

] [
gβµA

α − δα
βAµ − δα

µAβ

]

−
[
gλµA

β − δβ
λAµ − δβ

µAλ

] [
gβνA

α − δα
βAν − δα

ν Aβ

]

(3.1)

where we have introduced two new Weyl-invariant tensors Fµν = F̃µν and Rµνλ
α = R̃µνλ

α.

The generalization to arbitrary tensors is straightforward.7

The above expression for Rµνλ
α can be rewritten in the form

Rµνλσ = Rµνλσ + δα
[µgν][λδβ

σ]

(
∇αAβ + AαAβ −

A2

2
gαβ

)
−Fµνgλσ (3.3)

where B[µν] ≡ Bµν −Bνµ indicates antisymmetrisation. We can write down similar expres-

sions involving Ricci tensor, Ricci scalar and Einstein tensor.

Rµν ≡ Rµαν
α = Rµν − (d − 2)

(
∇µAν + AµAν −A2gµν

)
− gµν∇λA

λ −Fµν = R̃µν (3.4)

R ≡ Rα
α = R − 2(d − 1)∇λA

λ + (d − 2)(d − 1)A2 = e−2φR̃

Gµν ≡ Rµν −
R

2
gµν = Gµν − (d − 2)

[
∇µAν + AµAν −

(
∇λA

λ −
d − 3

2
A2

)
gµν

]
−Fµν

7As is evident from the notation above, we use calligraphic alphabets to denote the Weyl-covariant

counterparts of the usual curvature tensors. Our notation for the usual Riemann tensor is defined by the

relation

[∇µ,∇ν ]V λ = Rµνσ
λ
V

σ
. (3.2)

– 6 –
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These curvature tensors obey various Bianchi identities8

Rµνλ
α + Rλ[µν]

α = 0

DλFµν + D[µFν]λ = 0

DλRµνα
β + D[µRν]λα

β = 0

(3.5)

and various reduced Bianchi identities9

R[µν] = Rµνα
α = −d Fµν

D[µRν]λ + DσRµνλ
σ = 0

Dλ

(
Gµλ + Fµλ

)
= 0

(3.6)

The tensor Rµνλσ does not have the same symmetry properties as that of the usual

Riemann tensor. For example,

Rµνλσ + Rµνσλ = −2 Fµνgλσ

Rµνλσ −Rλσµν = δα
[µgν][λδβ

σ]Fαβ −Fµνgλσ + Fλσgµν

RµανβV αV β −RναµβV αV β = −Fµν V αVα

(3.7)

The conformal tensors of the underlying spacetime manifold appear in the above for-

malism as a subset of conformal observeables in hydrodynamics. These conformal tensors

are the Weyl-covariant tensors that are independent of the background fluid velocity. The

Weyl curvature Cµνλσ is a well-known example of a conformal tensor. We have(for d ≥ 3)

Cµνλσ ≡ Rµνλσ + δα
[µgν][λδβ

σ]Sαβ = Cµνλσ −Fµνgλσ = e2φC̃µνλσ (3.8)

where the Schouten tensor Sµν is defined as10

Sµν ≡
1

d − 2

(
Rµν −

Rgµν

2(d − 1)

)
= Sµν−

(
∇µAν + AµAν −

A2

2
gµν

)
−

Fµν

d − 2
= S̃µν (3.10)

From equation (3.8), it is clear that Cµνλσ = Cµνλσ + Fµνgλσ is clearly a conformal

tensor. Such an analysis can in principle be repeated for the other known conformal tensors

in arbitrary dimensions.

The Weyl Tensor Cµνλσ has the same symmetry properties as that of Riemann Tensor

Rµνλσ .

Cµνλσ = −Cνµλσ = −Cµνσλ = Cλσµν

and Cµαλ
α = 0

(3.11)

8These identities can be derived from the Jacobi identity for the covariant derivative - [D[µ, [Dν],Dλ] +

[Dλ, [Dµ,Dν ]] = 0
9These identities are obtained from the Bianchi identities by contractions.

10Often in the study of conformal tensors , it is useful to rewrite other curvature tensors in terms of the

Schouten and the Weyl curvature tensors

Rµνλσ = Cµνλσ − δ
α
[µgν][λδ

β

σ]Sαβ, R = 2(d − 1)Sλ
λ

Rµν = (d − 2)Sµν + Sλ
λ
gµν , Gµν = (d − 2)(Sµν − Sλ

λ
gµν)

(3.9)
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From which it follows that Cµανβuαuβ is a symmetric traceless and transverse tensor - a fact

which will turn out to be important later in our discussion of conformal hydrodynamics.

4. Conformal hydrodynamics

In this section, we reformulate the fundamental equations of fluid mechanics in a Weyl-

covariant form. The basic equations of fluid mechanics are the conservation of energy-

momentum and various other charges -

∇µT µν = 0 and ∇µJµ = 0 (4.1)

But, these equations are not manifestly Weyl-covariant. To cast them into a manifestly

Weyl-covariant form, we need the transformation of the stress tensor and the currents -

T µν = e−(d+2)φT̃ µν +. . . and Jµ = e−wφJ̃µ respectively (where . . . denotes the contributions

due to the Weyl anomaly T λ
λ = W. The Weyl Anomaly W only on the microscopic field

content and the ambient spacetime in which the conformal fluid lives.). Then, we can

impose a manifestly Weyl covariant11 set of equations

DµT µν = ∇µT µν + Aν(T µ
µ −W) = 0

DµJµ = ∇µJµ + (w − d)AµJµ = 0
(4.2)

These equations coincide with (4.1) provided T µν is a traceless tensor of conformal weight

d + 2 apart from the anomalous contribution and the conformal weight w of the conserved

current is equal to the number of dimensions of the spacetime. The second condition is

same as requiring that the charge associated with the charge currents be a dimensionless

scalar.

The entropy current Jµ
S of the fluid also has a conformal weight equal to the spacetime

dimensions. This means that we can write the statement of the second law in a manifestly

conformal way as

DµJµ
S = ∇µJµ

S ≥ 0 (4.3)

Similarly, the first law of thermodynamics T uλ∇λs = (d − 1)uλ∇λp − µiu
λ∇λρi can be

written in a conformal form

T uλDλs = (d − 1)uλDλp − µiu
λDλρi (4.4)

11The Weyl transformation of the stress tensor in quantum theories is non-trivial because of the presence

of Weyl anomaly . The situation is simplified if we assume that there exists a symmetric tensor T
µν
conf =

T µν
− W

µν [g] = e−(d+2)φ eT
µν
conf where W

µν [g] characterizes the contribution due to Weyl anomaly which

depends only on the background spacetime and the field content. In that case, though T µν does not

transform homogeneously under the Weyl transformations, one can show that DµT µν = e−(d+2)φ eDµT̃ µν

with DµT µν defined as above. This shows that the contributions due to Weyl anomaly can be taken into

account with slight modifications. In what follows, we will ignore such subtleties due to Weyl anomaly - we

will just assume that the energy-momentum tensor is traceless with the presumption that the statements

we make can always be suitably modified once trace anomaly is taken into account.

– 8 –
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where (d − 1)p is the energy density of the conformal fluid.12

The fluid mechanics is completely specified once the expressions of the energy mo-

mentum tensor, the charged currents and the entropy current in terms of the velocity,

temperature and the chemical potentials. The conventional discussion on relativistic hy-

drodynamics(say as given by Landau and Lifshitz [38]) can be adopted to the case of

conformal fluids with the additional condition that the energy momentum tensor of a

conformal fluid is traceless. The energy-momentum tensor, the charged currents and the

entropy current of the fluid are usually divided into a non-dissipative part and a dissipative

part.

T µν = p (gµν + d uµuν) + πµν

Jµ
i = ρiu

µ + νµ
i

Jµ
S = suµ + Jµ

S,diss

(4.5)

where we take the visco-elastic stress πµν to be transverse (uµπµν = 0) and traceless

(πµ
µ = 0) and the diffusion current νµ

i to be transverse (uλνλ
i = 0). This in turn implies

the following equations

0 = −uνDµT µν = (d − 1)uλDλp + πµνσµν

0 = DλJλ
i = uλDλρi + Dλνλ

i

(4.6)

We can now use the first law of thermodynamics (4.4) to conclude

T DµJµ
S = −πµνσµν + µiDλνλ

i + T DµJµ
S,diss ≥ 0 (4.7)

Now we can write down the most general form of the dissipative currents confining

ourselves to no more than second derivatives in velocity.13 For simplicity, we will consider

here the case when no charges are present - the generalization to the case when there

are conserved charges is straightforward. Hence, a general derivative expansion for the

energy-momentum tensor T µν is given by

T µν = η0T
d(gµν + duµuν) + η1T

d−1σµν

+ η2T
d−2 uλDλσµν + η3 T d−2[ωµ

λσλν + ων
λσλµ]

+ η4 T d−2

[
σµ

λσλν −
Pµν

d − 1
σαβσαβ

]
+ η5 T d−2

[
ωµ

λωλν +
Pµν

d − 1
ωαβωαβ

]

+ η6 T d−2Cµ
α

ν
βuαuβ

(4.8)

where the first line denotes the non-dissipative part(with the conformal equation of state

p = η0T
d) and the rest denote the visco-elastic stress πµν . We show in the appendix (B)

12Note that the additional terms that appear when one converts ∇ to D in (4.4) cancel out because of

Gibbs-Duhem Relation T s = (d− 1)p+ p−µiρi where (d− 1)p is the energy density of the conformal fluid.
13Given the fact that for a conformal fluid p ∼ T

d and the equation of motion uλ
Dλp ∼ πµνσµν we

conclude that wherever a single derivative of T occurs, it can be replaced by a term involving two or more

derivatives of the fluid velocity. Hence, for the sake of counting, one derivative of T should be counted as

equivalent to two derivatives of uµ.
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that no more terms appear at this order in the derivative expansion. This derivative ex-

pansion in terms of conformally covariant terms was first analyzed in [2] and our discussion

here closely parallels theirs.14.

5. Entropy current in Conformal hydrodynamics

Now we can write down the expression for the second law by restricting (4.7) to the case

where there are no charges, and then substituting for πµν from (4.8)

T DµJµ
S = T DµJµ

S,diss − η1T
d−1σµνσµν − η2T

d−2σµν uλDλσµν

− η4 T d−2σµνσµ
λσλν − η5 T d−2σµνω

µ
λωλν

− η6 T d−2σµνCµανβuαuβ

(5.1)

Now we invoke two identities(see appendix A for the proofs)

σµνωµ
αωαν = Dλ

[
ωµνωµν

4
uλ +

Dνω
λν

2(d − 3)

]
(5.2)

σµνCµανβuαuβ = σµνσµ
ασαν + Dλ

[
2σµνσµν + ωµνωµν

4
uλ +

uµ(Gµλ + Fµλ)

d − 2
+

3Dνωλν

2(d − 3)

]

to write

T DµJµ
S = −η1T

d−1σµνσµν − (η4 + η6) T d−2σµνσ
µ

λσλν + T DµJµ
S,diss (5.3)

−T d−2Dλ

[(
2(η2 + η6) σµνσµν + (η5 + η6) ωµνωµν

4

)
uλ

+
η6 uµ(Gµλ + Fµλ)

d − 2
+

(η5 + 3η6)

2(d − 3)
Dνωλν

]

We now want to propose an expression for the dissipative entropy flux such that the

total entropy obeys the second law of thermodynamics. In this paper, we give a specific

proposal for this entropy current which is consistent with the second law.15 Taking the

dissipative entropy flux as

Jλ
S,diss =

(
2(η2 + η6)T

d−3 σµνσµν + (η5 + η6)T
d−3 ωµνωµν

4

)
uλ

+
η6T

d−3 uµ(Gµλ + Fµλ)

d − 2
+

(η5 + 3η6)T
d−3

2(d − 3)
Dνω

λν

(5.4)

14Refer section 6 to see how our notation is related to that of [1] and [2].
15Note that, the second law alone does not determine the entropy flux uniquely - for example, an additional

term with positive divergence can always be added to the dissipative entropy flux without violating the

second law. Given this fact, it is important to emphasize that what is being proposed here is just one

possible definition of the entropy current. See section 8 for a discussion of this issue.
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and keeping only terms with three derivatives or less of velocity16

T DµJµ
S = −η1T

d−1σµνσµν − (η4 + η6) T d−2σµνσ
µ

λσλν

= −η1T
d−1

[
σµν +

η4 + η6

2η1T
σµ

λσλν

] [
σµν +

η4 + η6

2η1T
σµ

ασαν

]
(5.5)

from which we conclude that

η1 ≤ 0 (5.6)

along with a dissipative current of the form given in equation(5.4) is sufficient to ensure

that the conformal fluid obeys the second law17

T DµJµ
S = −η1T

d−1

[
σµν +

η4 + η6

2η1T
σµ

λσλν

] [
σµν +

η4 + η6

2η1T
σµ

ασαν

]
≥ 0 (5.7)

Hence for a general energy-momentum tensor of the form

T µν = p(gµν + duµuν) − 2η
[
σµν − τπ uλDλσµν + τω(ωµ

λσλν + ων
λσλµ)

]

+ ξσ

[
σµ

λσλν −
Pµν

d − 1
σαβσαβ

]
− ξC Cµανβuαuβ

+ ξω

[
ωµ

λωλν +
Pµν

d − 1
ωαβωαβ

]
(5.8)

where we have defined

p = η0T
d, −2η = η1T

d−1, 2ητπ = η2T
d−2 (5.9)

−2ητω = η3T
d−2, ξσ = η4T

d−2, ξC = −η6T
d−2, ξω = η5T

d−2

the proposed expression for the entropy current is

Jλ
s = suλ + Jλ

S,diss (5.10)

=

(
s −

2(ξC − 2ητπ) σµνσµν + (ξC − ξω) ωµνωµν

4T

)
uλ

−
ξCuµ(Gµλ + Fµλ)

(d − 2)T
−

(3ξC − ξω)

2(d − 3)T
Dνωλν

with T DµJµ
S = 2η

[
σµν +

ξC − ξσ

4η
σµ

λσλν

] [
σµν +

ξC − ξσ

4η
σµ

ασαν

]
≥ 0

These expressions completely determine the dynamics of a conformal fluid up to second

derivatives in the derivative expansion. We now proceed to apply the above formalism to

the constitutive relations of N = 4 SYM fluid derived recently using AdS/CFT correspon-

dence.

16Since we are working with the divergence of quantities accurate up to second derivatives of velocity,

consistency demands that we keep terms involving three derivatives or less. Further, as before, we use the

equations of motion to replace a derivative of T by a term involving two or more derivatives of the fluid

velocity.
17This section has greatly benefited from my discussions with Shiraz Minwalla regarding the validity of

second law for the entropy flux proposed above. I would also like to thank Veronica Hubeny, Giuseppe

Policastro, Mukund Rangamani, Dam Thonh Son and Misha Stephanov for commenting on an earlier

version of this section.
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6. N = 4 SYM fluid: energy-momentum and entropy current

A prominent example of a conformal fluid in four dimensions is the fluid made out of the

matter content in N = 4 supersymmetric Yang-Mills theory. The flat spacetime stress

tensor for the four dimensional conformal fluids with AdS duals (which in particular in-

cludes N = 4 SYM fluid in the four dimensional Minkowski spacetime) has been calculated

recently via AdS/CFT upto second derivative terms [1]. Independently, in [2], its authors

wrote down the general derivative expansion for a conformal fluid and determined some

of the coefficients occurring in that expansion. In this section, we relate the work done in

above references to the formalism developed here.

The expression for the energy-momentum tensor derived in [1] is

T µν =p (gµν + 4uµuν)

− 2 η σµν + 2 η
(ln 2) T µν

2a + 2 T µν
2b + (2 − ln 2)

[
1
3T µν

2c + T µν
2d + T µν

2e

]

2πT

(6.1)

where

p =
N2

c

8π2
(πT )4; η =

N2
c

8π2
(πT )3

ϑ = ∇λuλ ; aµ = uλ∇λuµ; lµ = ǫαβγµuαωβγ ;

σµν = PµαP νβ

(
∇αuβ + ∇βuα

2

)
− Pµν ∇αuα

3
;

T µν
2a =

ǫαβγµuαlβσγ
ν + ǫαβγνuαlβσγ

µ

2
;

T µν
2b = σµασν

α −
Pµν

3
σβασαβ;

T µν
2c = ϑσµν ;

T µν
2d = aµaν − aλaλ Pµν

3
;

T µν
2e = PµαP νβuλ∇λ

(
∇αuβ + ∇βuα

2

)
−

Pµν

3
P βγuλ∇λ (∇βuγ) ;

(6.2)

where ǫ0123 = −ǫ0123 = 1 and we are working in flat co-ordinates of the Minkowski space-

time. The above expression can be rewritten in terms of manifestly conformal observables

as follows.

T µν
2a = −ωµ

λσλν − ων
λσλµ,

T µν
2b = σµασα

ν −
Pµν

3
σβασαβ

1

3
T µν

2c + T µν
2d + T µν

2e = PµαP νβuλ∇λσαβ +
ϑ

d − 1
σµν (6.3)

= PµαP νβuλDλσαβ

= uλDλσµν

– 12 –
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The stress tensor becomes

T µν = p (gµν + 4uµuν)

− 2 η

[
σµν −

(2 − ln 2)

2πT
uλDλσµν +

(ln 2)

2πT
(ωµ

λσλν + ων
λσλµ)

]

+
4 η

2πT

[
σµλσλ

ν −
Pµν

3
σαβσαβ

]
(6.4)

This expression matches18 with the expression in (5.8) provided we take

p =
N2

c

8π2
(πT )4 ; η =

N2
c

8π2
(πT )3 ; (6.5)

τπ =
2 − ln 2

2πT
; τω =

ln 2

2πT
; ξσ = ξC =

4 η

2πT
; ξω = 0 .

where we have also included the value of the curvature coupling ξC which was calculated

by the authors of [2].

Now, we proceed to compare the results of [2] to the results derived here. Translated

into notations of this paper19 their expression (See eq. (3.11) of [2]) reads

πµν = − 2ησµν + 2ητπ uλDλσµν − κ

[
PµλP νσRλσ + (d − 2)PµλP νσRλασβuαuβ

−
Pµν

d − 1
(P λσRλσ + (d − 2)P λσRλασβuαuβ)

]

+ 4λ1

(
σµ

λσλν −
Pµν

d − 1
σαβσαβ) + 4λ2(ω

µ
λσλν + ων

λσλµ

)

+ λ3

(
ωµ

λωλν +
Pµν

d − 1
ωαβωαβ

)

(6.6)

with

p =
N2

c

8π2
(πT )4 ; η =

N2
c

8π2
(πT )3 ;

τπ =
2 − ln 2

2πT
; λ1 =

η

2πT
; κ =

η

πT
;

and the parameters λ2,3 were left undetermined in [2]. By inspection, we conclude that the

above expression satisfies20 the conditions we laid down in (5.6).The above expression is

18Note that the calculation in [1] was done for flat spacetime and hence the curvature term does not

appear in their derivation.
19Note that the σµν of [2] is twice that of ours and their curvature tensors are negative of the curvature

tensors defined in this paper.
20We have invoked the identity (which follows by applying projection operators to the the definition of

Weyl tensor in (3.8))

P
µλ

P
νσ

Rλσ + (d − 2)P µλ
P

νσ
Rλασβu

α
u

β
−

P µν

d − 1
(P λσ

Rλσ + (d − 2)P λσ
Rλασβu

α
u

β)

= (d − 2)Cµανβu
α
u

β
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completely consistent with the coefficients we derived above in (6.5). Hence, the second-

order hydrodynamics of N = 4 SYM fluid is completely summarized by (6.5).

Now, we can use the discussion in our previous section to calculate the entropy current

for N = 4 SYM fluid. Using the equation of state T s = p d = 4p = 4πηT for a conformal

fluid and (5.10) we get

Jλ
s = 4πη

[
uλ −

[(ln 2)σµνσµν + ωµνωµν ] u
λ + 2uµ(Gµλ + Fµλ) + 6Dνω

λν

8(πT )2

]

with T DµJµ
S = 2ησµνσµν ≥ 0. (6.7)

This expression gives the the next to leading order corrections to the holographic result

Jλ
s = 4πηuλ of Kovtun, Son and Starinets [15].

Note that our proposal for the entropy current was motivated in an indirect way -

by first finding the holographic energy-momentum tensor and then guessing the entropy

current from it by demanding second law. It would be interesting to do a direct gravity

computation of the entropy current that checks this proposal. See section 8 for a discussion

on this issue. Further, the rate of entropy production takes a very simple form in the case

of N = 4 SYM fluid - the total entropy production is completely given by a term quadratic

in shear strain rate σµν and there is no contribution at the next order. This fact can be

traced to an interesting fact that ξσ = ξC for N = 4 SYM.

We would now like to give a heuristic reason for why we might expect the entropy pro-

duction to take such a simpler form. Notice that the additional contribution to the entropy

production(over and above the standard shear viscosity part) comes from a viscoelastic

stress of the form πµν ∼ σµ
λσλν . The rate of energy transfer by such a stress is σµνπµν ∼

σµνσµ
λσλν . If this energy transfer was irreversible, this would contribute to an entropy

production −T −1σµνπ
µν which is precisely the term which we arrived at in the last section.

However, the energy transfer by a stress of the form π ∼ σσ is reversible - in particular,

for such a stress, the rate of work done πσ reverses sign if we reverse the fluid flow. If

we assume that such a reversible energy transfer cannot contribute to entropy production,

then either such a term can be absorbed into a redefinition of the Jµ
S,diss or the coefficient of

such a contribution should vanish. The second possibility immediately yields the condition

ξσ = ξC . This, however is a very heuristic line of reasoning and it would be interesting

to know how far it is valid. In principle, it should be possible to extend the holographic

calculation of ξC and ξσ to arbitrary dimensional AdS gravity and check whether the

relation ξc = ξσ continues to hold.

In the next section, we compare and contrast the formalism used in this paper with the

conventional theories of relativistic hydrodynamics. In particular, we would be interested

in comparison with the conventional Israel-Stewart formalism.

7. Israel-Stewart formalism

In this section, we give an extremely brief and non-exhaustive review of the conventional

theories of relativistic hydrodynamics [39, 40] and discuss how the work presented in this

paper fits into that framework.
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The first theories of relativistic viscous hydrodynamics are due to Eckart [41], Landau

and Lifshitz [38]. These classical theories which are simple generalizations of their non-

relativistic counterparts, assume a linear constitutive relation between the viscous stress

πµν and the strain rate σµν . This linear approximation (called the Newtonian approxima-

tion) is the most familiar model in dissipative hydrodynamics and the fluids which obey

such a relation are called Newtonian fluids.

Such a linear theory, however, leads to parabolic equations for the dissipative fluxes and

predict very large speeds of propagation in situations with steep gradients, in contradic-

tion with relativity and causality. It was noticed by many authors including Grad, Muller,

Israel [42] and Stewart [43, 44] that one can easily solve this problem by including terms

involving higher derivative corrections to the constitutive relations.21 The most simple

extension is to add a non-zero relaxation time in the equation thus converting the problem

into a hyperbolic system of equations.22 The resultant theory is called as causal viscous

hydrodynamics or Extended Irreversible Thermodynamics(EIT) or just Israel-Stewart the-

ory.23

This approach outlined above differs from the approach adopted here and elsewhere [1,

2] in the holographic studies of N = 4 SYM. In particular, some of the terms appearing in

the general derivative expansion of conformal fluids are absent in the conventional Israel-

Stewart formalism.24

One way of formulating Israel-Stewart theory is to consider dissipative fluxes like vis-

cous stress and heat flow as new thermodynamic variables and treat entropy as a function

of these new variables. In particular, one formulates the dynamics of such fluxes in a way

that is consistent with the second law of thermodynamics. For a conformal fluid with no

conserved charges, the viscoelastic stress in Israel-Stewart theory obeys an equation of the

form25

πµν + τπuλDλπµν = −2 η σµν + τω(ωµ
λπλν + ων

λπλµ) (7.1)

so that one can prove a version of the second law

Jλ
s =

(
s −

τπ

4ηT
πµνπµν

)
uλ DλJλ

s =
πµνπµν

2ηT
≥ 0 (7.2)

21Many authors including Geroch [45] have argued that the large speeds of propagation might not be a

problem if the gradients required to produce them are so steep that they are beyond the domain of validity

of hydrodynamics (We remind the reader that the hydrodynamics ceases to be valid if the ratio of mean

free path to the length scale at consideration (i.e., the Knudsen number) is larger than one). But, this

argument might not apply to all fluids - see [46, 47] for further discussion of this issue.
22If one is interested in rotational flows, one can further add other terms involving vorticity ωµν and cross

terms involving other hydrodynamic variables.
23Note that, there are other alternative solutions to the problem of causality in Newtonian hydrodynamics.

One such class of models termed divergence type theories were discussed by Geroch and Lindblom [48] and

under quite general conditions, these class of theories exhibit finite speeds of propagation [49].
24Further, the authors of the reference [2] argue that some of these terms would be absent even in a

systematic derivation of Israel-Stewart formalism from Relativistic Kinetic theory via moment closures.
25Note that often in the literature, τω is taken to be equal to τπ. We refrain from making such an

identification here in order to facilitate easy comparison.
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There is now a wide literature devoted to the analysis of the equations above and this

formalism has been recently applied to the phenomenology of heavy-ion collisions.26

We can take the above equations and eliminate πµν in favor of σµν . We get the following

expression which is exact up to second derivatives

πµν = −2 η
[
σµν − τπuλDλσµν + τω(ωµ

λσλν + ων
λσλµ)

]
(7.3)

Comparing the equations so obtained with the equation(5.8) , it is clear that an Israel-

Stewart conformal fluid is a fluid with ξσ, ξC and ξω set to zero. Using the above expression,

following the method employed in section 5, we can define an entropy current associated

with this fluid obeying the second law.27

However, as the previous sections make it clear, the Israel-Stewart conformal fluids

form only a subset of conformal fluids. And more importantly, N = 4 SYM fluid lies

outside the subset since it has ξσ = ξC 6= 0 . N = 4 SYM fluid has a shear-shear coupling

(and a coupling to the Weyl curvature) which is absent in the conventional Israel Stewart

formalism. Hence, the approach developed in the study of N = 4 SYM fluid should be

looked upon as a generalization of the Israel Stewart formalism and the entropy current in

the equation(5.10) should be treated as a generalization of the Israel-Stewart expression in

the equation(7.2).

The main difference between the two formalisms lies in the way the viscoelastic stress

is treated. As far as the contribution of the viscoelastic stress to the entropy current is

concerned, Israel-Stewart formalism takes an extended thermodynamic point of view by

assuming that all sources of viscoelastic stress contribute equally to the entropy current,

whereas the entropy current proposed in this paper treats different sources of visco-elastic

stress differently. Rather than assuming that the entropy density is solely a function of

πµν , the entropy current is allowed to be a general function of the fluid velocity and its

derivatives. Note that, despite going out of Israel Stewart formalism, we have succeeded

in defining an entropy current which is consistent with the second law.28

8. Discussion and conclusion

The holographic study of N = 4 SYM has already given us an interesting constitutive

relation parametrised by (6.5). In this paper, an expression for the entropy current that

is consistent with this constitutive relation has been proposed via the simple requirement

that the fluid in question should obey second law of thermodynamics. This gives a very

specific expression for the entropy current of N = 4 SYM fluid. However, as has been

mentioned before, demanding second law is often not sufficient to completely determine

the entropy flux. A term with positive divergence can always be added to the entropy

26A non-exhaustive list of references include [50 – 56]
27Note however that the Jλ

s,diss so obtained is the negative of what would be naively expected from

equation(7.2). This apparent discrepancy can be traced to the ambiguity in the definition of Jλ
S,diss.

28The author thanks Shiraz Minwalla for pointing out this distinction and for discussions about related

issues.
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flux without violating second law. Given this fact, it is extremely important to have an

independent holographic computation to check whether this proposal is indeed correct.

We would like to remind the reader of an observation we made earlier - the rate of

entropy production took a simpler form in the case of N = 4 SYM fluid. This is due to

an interesting relation ξσ = ξC which holds for N = 4 SYM fluid. It would be interesting

to see whether this relation is an universal relation for conformal fluids with holographic

duals in arbitrary dimensions.29 Further, it would be interesting to generalize the analysis

of this paper to charged conformal fluids and find the corresponding entropy current.

We would like to note that indirectly, the expression given in this paper is also a

proposal for an entropy current associated with the metric that is dual to the given fluid

mechanical configuration. As of now, we do not have a very good prescription to calculate

the entropy of such a metric configuration. This situation should be contrasted with

the situation in the case of stationary black holes where the Bekenstein-Hawking entropy

or more generally Wald entropy is believed to give a reliable prescription for calculating

their entropy. Now that we have a specific proposal for the entropy current of a given

metric configuration, a direct geometrical derivation of this entropy current would be a

very interesting result.

In particular, the covariant formalism for conformal fluids that has been developed in

this paper seems to be a natural setting in which the entropy current takes a simple form.

Perhaps there exists a bulk interpretation of this formalism that provides the proper setting

to look at the relation between the entropy and geometry. Given that the generalized second

law in gravity is closely associated with the area increase theorem, it would be exciting

to see how the area increase theorem in the bulk corresponds to the second law in the

boundary. A detailed study of these issues may yield new insights regarding the relation

between field theory and gravity.

On the other hand, in the gauge theory side, it would be interesting to compare the

constitutive relation of the N = 4 SYM with that of the actual quark gluon plasma

observed in RHIC. In particular, it would be interesting to work out the effect of the

new viscoelastic terms on the various observables of interest in heavy ion collisions like

the elliptic flowḟootnoteHowever, assuming that the second order effects are suppressed

relative to the leading behaviour in the heavy ion collisions, it might be very difficult to

extract any experimental signature of the viscoelastic behaviour. I would like to thank

Paul Romatschke for pointing this out. The expression for the entropy current proposed

here has an interesting structure which couples shear strain rate, expansion, acceleration

and vorticity in a complicated way. A more thorough study of this expression might yield

some insight on the entropy production and transport processes that happen at RHIC. It

would be interesting to look at how the analysis in [57], for example, would be changed, if

we use the expression for the entropy current derived in this paper.30

29The author would like to thank Dam Thanh Son for suggesting this possibility.
30Further, the expression here could be used, for example, to calculate and check the rate of entropy

production in the numerical simulations of heavy-ion collisions (see [54, 55] for some recent examples). The

author wishes to thank Paul Romatschke for suggesting this possibility.
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A. Some useful identities

In this appendix, we prove some identities that were used in the main body of this paper.

In particular, we want to sketch the proof of the equations quoted in equation(5.2).

First, we use the definition of Rµαν
λ in terms of the commutator to write

uα(Rµαν
λuλ + Fµαuν) = −uα[Dµ,Dα]uν (A.1)

= −Dµ(uαDαuν) + (Dµuα)(Dαuν) + uαDα(Dµuν)

= σµ
ασαν + σµ

αωαν − σν
αωαµ + ωµ

αωαν + uαDα(σµν + ωµν)

Next, we multiply the expression above with σµν and ωµν respectively, and simplify

the resulting expressions using the curvature identities in section 3 to get

σµνCµανβuαuβ − σµνSµν = σµνσµ
ασαν + σµνωµ

αωαν + σµνuαDασµν

1

2
ωµνFµν = −2σµ

αωανω
νµ + ωµνuαDαωµν

(A.2)

The next step is to derive another identity which directly follows from the reduced

Bianchi identity (See (3.6) )

Dλ

[
uµ(Gµλ + Fµλ)

d − 2

]
=

(Dλuµ)(Gµλ + Fµλ)

d − 2

=
(Dλuµ)(Gµλ + d

2F
µλ − d−2

2 Fµλ)

d − 2

=
σλµ(Gµλ + d

2F
µλ)

d − 2
−

1

2
ωλµF

µλ

= σµνSµν +
1

2
ωµνF

µν

(A.3)

where we have used the fact that Gµλ + d
2F

µλ is a symmetric tensor.

We will need one more identity to finish the proof.

Dµ

[
Dνωµν

d − 3

]
=

1

2(d − 3)
[Dµ,Dν ]ωµν

=
3Fµνωµν + R[µν]ω

µν

2(d − 3)
= −

1

2
Fµνωµν

(A.4)
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Using the above identities, it is now straightforward to get the equations quoted

in (5.2).

σµνωµ
αωαν = Dλ

[
ωµνωµν

4
uλ +

Dνω
λν

2(d − 3)

]
(A.5)

σµνCµανβuαuβ = σµνσµ
ασαν + Dλ

[
2σµνσµν + ωµνωµν

4
uλ +

uµ(Gµλ + Fµλ)

d − 2
+

3Dνω
λν

2(d − 3)

]

B. Conformal energy-momentum tensor

In this appendix, we list all the terms that can appear in the energy-momentum tensor of

a conformal fluid and show that only a few of them are linearly independent.

In order to write down the most general derivative expansion of the viscoelastic stress

πµν , we list below all the Weyl- covariant second- rank tensors which are symmetric, trans-

verse and traceless.

σµν , uλDλσµν , [ωµ
λσλν + ων

λσλµ],
[
σµ

λσλν −
Pµν

d − 1
σαβσαβ

]
,

[
ωµ

λωλν +
Pµν

d − 1
ωαβωαβ

]
,

Cµανβuαuβ ,

[
PµλP νσ

(
Rλσ +

d

2
Fλσ

)
−

Pµν

d − 1
P λσRλσ

]
,

[
PµλP νσ

(
Rλασβuαuβ −

1

2
Fλσ

)
−

Pµν

d − 1
P λσRλασβuαuβ

]

(B.1)

Note that, the different terms appearing above are not all independent .

To show that we take the relation

−uα[Dµ,Dα]uν = −uαDµDαuν + uαDαDµuν = (Dµuα)(Dαuν) + uαDα(Dµuν)

and project out out the symmetric traceless transverse part to get
[
PµλP νσ

(
Rλασβuαuβ −

1

2
Fλσ

)
−

Pµν

d − 1
P λσRλασβuαuβ

]
(B.2)

=

[
σµ

λσλν −
Pµν

d − 1
σαβσαβ

]
+

[
ωµ

λωλν +
Pµν

d−1
ωαβωαβ

]
+ uλDλσµν

Further, if we denote by the subscript TT the transverse traceless part, then we have

using (3.9)

[Rλσ + (d − 2)Rλασβuαuβ ]TT = [Rλσ + (d − 2)Rλασβuαuβ]TT = (d − 2)Cλασβuαuβ

Hence, the independent terms that occur in a derivative expansion are

σµν , uλDλσµν ,

[
ωµ

λσλν + ων
λσλµ

]
,

[
σµ

λσλν −
Pµν

d − 1
σαβσαβ

]
,

[
ωµ

λωλν +
Pµν

d − 1
ωαβωαβ

]
,

Cµανβuαuβ

(B.3)

and so we obtain the derivative expansion in (4.8).
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Symbol Definition Symbol Definition

d dimensions of spacetime p Pressure

s Proper entropy density ρi Proper charge density

T Fluid temperature µi Chemical potentials of the fluid

νi µi/T η Shear viscosity measured at

τπ Stress relaxation time (5.8) zero shear and vorticity (5.8)

τω Shear vorticity coupling (5.8) ξσ Shear- shear coupling (5.8)

ξC Weyl Curvature coupling (5.8) ξω Vorticity vorticity coupling (5.8)

T µν Energy-momentum tensor Jµ
S Entropy current

Jµ
i Charge currents uµ Fluid velocity (uµuµ = −1)

gµν Spacetime metric Pµν Projection tensor, gµν + uµuν

aµ Fluid acceleration (2.4) ϑ Fluid expansion (2.4)

σµν Shear strain rate(2.6) ωµν Fluid vorticity (2.6)

πµν Visco-elastic stress (4.5) νµ
i Charge diffusion currents (4.5)

ηi Coefficients in η0 p/T d

derivative expansion(4.8) η1 −2η/T d−1

η2 2ητπ/T d−2 ≤ 0 to satisfy second law (5.6)

η3 −2ητω/T d−2 η4 ξσ/T d−2

η5 ξω/T d−2 η6 -ξC/T d−2

Dµ Weyl-covariant derivative (2.5) Aµ See (2.4)

∇µ Lorentz-covariant derivative (2.3) Γµν
λ Christoffel connection

Rµνλ
σ Riemann Curvature (3.2) Rµνλ

σ See (3.1), (3.3) and (3.7)

Fµν ∇µAν −∇νAµ

Rµν , R Ricci tensor/scalar Rµν ,R See (3.4)

Gµν Einstein tensor Gµν See (3.4)

Sµν , Schouten tensor (3.10) Cµνλσ, Weyl Curvature (3.8),(3.11)

Sµν Cµνλσ

Table 1: A Summary of notations employed in this paper — the relevant equations are denoted

by their respective equation numbers appearing inside parentheses.

C. Notation

We work in the (− + + . . .) signature. µ, ν denote space-time indices, i, j = 1 . . . k label

the k different conserved charges. The dimensions of the spacetime in which the conformal

fluid lives is denoted by d .In the context of AdS/CFT, the dual AdSd+1 space has d + 1

spacetime dimensions. We use square brackets to denote antisymmetrisation. For example,

B[µν] ≡ Bµν − Bνµ.

Our conventions for Christoffel symbols and the curvature tensors are fixed by the

relations

∇µV ν = ∂µV ν + Γµλ
νV λ and [∇µ,∇ν ]V λ = Rµνσ

λV σ. (C.1)

See the table above for a summary of other notations employed in this paper.

– 20 –



J
H
E
P
0
5
(
2
0
0
8
)
0
8
7

References

[1] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics

from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456].

[2] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous

hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100

[arXiv:0712.2451].

[3] D.H. Rischke, S. Bernard and J.A. Maruhn, Relativistic hydrodynamics for heavy ion

collisions. 1. General aspects and expansion into vacuum, Nucl. Phys. A 595 (1995) 346

[nucl-th/9504018].

[4] P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions,

nucl-th/0305084.

[5] E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog.

Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227].

[6] STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search

for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from

RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009].

[7] P. Romatschke and U. Romatschke, Viscosity information from relativistic nuclear collisions:

how perfect is the fluid observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301

[arXiv:0706.1522].

[8] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111].

[9] I.R. Klebanov, TASI lectures: introduction to the AdS/CFT correspondence,

hep-th/0009139.

[10] E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT

correspondence, hep-th/0201253.

[11] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to

hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052].

[12] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to

hydrodynamics. II: sound waves, JHEP 12 (2002) 054 [hep-th/0210220].

[13] C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126].

[14] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on

stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213].

[15] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231].

[16] A.O. Starinets, Transport coefficients of strongly coupled gauge theories: insights from string

theory, Eur. Phys. J. A29 (2006) 77 [nucl-th/0511073].

[17] P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma with

chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145].

[18] R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of

AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162].

– 21 –

http://jhep.sissa.it/stdsearch?paper=02%282008%29045
http://arxiv.org/abs/0712.2456
http://jhep.sissa.it/stdsearch?paper=04%282008%29100
http://arxiv.org/abs/0712.2451
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA595%2C346
http://arxiv.org/abs/nucl-th/9504018
http://arxiv.org/abs/nucl-th/0305084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PPNPD%2C53%2C273
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PPNPD%2C53%2C273
http://arxiv.org/abs/hep-ph/0312227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA757%2C102
http://arxiv.org/abs/nucl-ex/0501009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C99%2C172301
http://arxiv.org/abs/0706.1522
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/hep-th/0009139
http://arxiv.org/abs/hep-th/0201253
http://jhep.sissa.it/stdsearch?paper=09%282002%29043
http://arxiv.org/abs/hep-th/0205052
http://jhep.sissa.it/stdsearch?paper=12%282002%29054
http://arxiv.org/abs/hep-th/0210220
http://jhep.sissa.it/stdsearch?paper=12%282002%29026
http://arxiv.org/abs/hep-th/0210126
http://jhep.sissa.it/stdsearch?paper=10%282003%29064
http://arxiv.org/abs/hep-th/0309213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C111601
http://arxiv.org/abs/hep-th/0405231
http://arxiv.org/abs/nucl-th/0511073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB645%2C309
http://arxiv.org/abs/hep-th/0610145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C045013
http://arxiv.org/abs/hep-th/0512162


J
H
E
P
0
5
(
2
0
0
8
)
0
8
7

[19] R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98

(2007) 022302 [hep-th/0610144].

[20] S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182].

[21] J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016

[hep-th/0601144].

[22] K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical

potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010].

[23] S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP 09 (2006) 020

[hep-th/0607123].

[24] O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite

chemical potential, JHEP 10 (2006) 083 [hep-th/0601159].

[25] D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052

[hep-th/0601157].

[26] S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions: I.

falling into the AdS, Phys. Rev. D 77 (2008) 085013 [hep-ph/0610168].

[27] S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions: II. the

stress tensor on the boundary, Phys. Rev. D 77 (2008) 085014 [arXiv:0711.0736].

[28] H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot

wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062].

[29] H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from

AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178].

[30] M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys.

Rev. D 76 (2007) 025027 [hep-th/0703243].

[31] Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the

dual gauge theory, arXiv:0712.0743.

[32] Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT

correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234].

[33] R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion

constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162].

[34] M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from

AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [arXiv:0712.2916].

[35] K. Kajantie, J. Louko and T. Tahkokallio, Gravity dual of conformal matter collisions in

1 + 1 dimensions, Phys. Rev. D 77 (2008) 066001 [arXiv:0801.0198].

[36] R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).

[37] G.S. Hall, Weyl manifolds and connections, J. Math. Phys. 33 (1992) 2633.

[38] L.D. Landau and E.M. Lifshitz, Fluid mechanics, in Course of theoretical physics series,

Pergamon Press, Oxford U.K. (1959).

[39] R. Maartens, Causal thermodynamics in relativity, astro-ph/9609119.

– 22 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C98%2C022302
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C98%2C022302
http://arxiv.org/abs/hep-th/0610144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C126005
http://arxiv.org/abs/hep-th/0605182
http://jhep.sissa.it/stdsearch?paper=03%282006%29016
http://arxiv.org/abs/hep-th/0601144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C066013
http://arxiv.org/abs/hep-th/0602010
http://jhep.sissa.it/stdsearch?paper=09%282006%29020
http://arxiv.org/abs/hep-th/0607123
http://jhep.sissa.it/stdsearch?paper=10%282006%29083
http://arxiv.org/abs/hep-th/0601159
http://jhep.sissa.it/stdsearch?paper=03%282006%29052
http://arxiv.org/abs/hep-th/0601157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C085013
http://arxiv.org/abs/hep-ph/0610168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C085014
http://arxiv.org/abs/0711.0736
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C98%2C182301
http://arxiv.org/abs/hep-ph/0607062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C182301
http://arxiv.org/abs/hep-ph/0605178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C025027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C025027
http://arxiv.org/abs/hep-th/0703243
http://arxiv.org/abs/0712.0743
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC76%2C014905
http://arxiv.org/abs/0705.1234
http://jhep.sissa.it/stdsearch?paper=11%282007%29091
http://arxiv.org/abs/0706.0162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C066014
http://arxiv.org/abs/0712.2916
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C066001
http://arxiv.org/abs/0801.0198
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C33%2C2633
http://arxiv.org/abs/astro-ph/9609119


J
H
E
P
0
5
(
2
0
0
8
)
0
8
7

[40] N. Andersson and G.L. Comer, Relativistic fluid dynamics: physics for many different scales,

Living Rev. Rel. 10 (2005) 1 [gr-qc/0605010].

[41] C. Eckart, The thermodynamics of irreversible processes. 3. Relativistic theory of the simple

fluid, Phys. Rev. 58 (1940) 919.

[42] W. Israel, Nonstationary irreversible thermodynamics: a causal relativistic theory, Ann. Phys.

(NY) 100 (1976) 310.

[43] W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Ann.

Phys. (NY) 118 (1979) 341.

[44] W.A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Ann.

Phys. (NY) 151 (1983) 466.

[45] R. Geroch, On hyperbolic “theories” of relativistic dissipative fluids, gr-qc/0103112.

[46] A.M. Anile, D. Pavon and V. Romano, The case for hyperbolic theories of dissipation in

relativistic fluids, gr-qc/9810014.

[47] L. Herrera and D. Pavon, Hyperbolic theories of dissipation: why and when do we need

them?, Physica A 307 (2002) 121 [gr-qc/0111112].

[48] R. Geroch and L. Lindblom, Dissipative relativistic fluid theories of divergence type, Phys.

Rev. D 41 (1990) 1855.

[49] I. Muller, Speeds of propagation in classical and relativistic extended thermodynamics, Living

Rev. Rel. 2 (1999) 1.

[50] A. Muronga, Second order dissiPative fluid dynamics for ultra-relativistic nuclear collisions,

Phys. Rev. Lett. 88 (2002) 062302 [nucl-th/0104064].

[51] A. Muronga, Causal theories of dissipative relativistic fluid dynamics for nuclear collisions,

Phys. Rev. C 69 (2004) 034903 [nucl-th/0309055].

[52] U.W. Heinz, H. Song and A.K. Chaudhuri, Dissipative hydrodynamics for viscous relativistic

fluids, Phys. Rev. C 73 (2006) 034904 [nucl-th/0510014].

[53] R. Baier and P. Romatschke, Causal viscous hydrodynamics for central heavy-ion collisions,

Eur. Phys. J. C 51 (2007) 677 [nucl-th/0610108].

[54] P. Romatschke, Causal viscous hydrodynamics for central heavy-ion collisions. II : meson

spectra and HBT radii, Eur. Phys. J. C 52 (2007) 203 [nucl-th/0701032].

[55] H. Song and U.W. Heinz, Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic

heavy-ion collisions, arXiv:0712.3715.

[56] R.S. Bhalerao and S. Gupta, Aspects of causal viscous hydrodynamics, Phys. Rev. C 77

(2008) 014902 [arXiv:0706.3428].

[57] A. Dumitru, E. Molnar and Y. Nara, Entropy production in high-energy heavy-ion collisions

and the correlation of shear viscosity and thermalization time, Phys. Rev. C 76 (2007)

024910 [arXiv:0706.2203].

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00222%2C10%2C1
http://arxiv.org/abs/gr-qc/0605010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C58%2C919
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C100%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C100%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C118%2C341
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C118%2C341
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C151%2C466
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C151%2C466
http://arxiv.org/abs/gr-qc/0103112
http://arxiv.org/abs/gr-qc/9810014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHYSA%2CA307%2C121
http://arxiv.org/abs/gr-qc/0111112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD41%2C1855
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD41%2C1855
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00222%2C2%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00222%2C2%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C062302
http://arxiv.org/abs/nucl-th/0104064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC69%2C034903
http://arxiv.org/abs/nucl-th/0309055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC73%2C034904
http://arxiv.org/abs/nucl-th/0510014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC51%2C677
http://arxiv.org/abs/nucl-th/0610108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC52%2C203
http://arxiv.org/abs/nucl-th/0701032
http://arxiv.org/abs/0712.3715
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC77%2C014902
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC77%2C014902
http://arxiv.org/abs/0706.3428
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC76%2C024910
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CC76%2C024910
http://arxiv.org/abs/0706.2203

